472 are placed at 90 degree increments around a base 474 of the controller to provide linear force and/or motion to the central vertical post 476. The post can be moved linearly by the user in the x- and/or y-directions to control a cursor, value, etc. It should be noted that the embodiments shown in FIGS. 8a-8d can be used with standard, larger-sized joysticks as well as trackpoint controllers, or other types of interface devices

[0107] Tactile arrays are multiple vertical "pins" that form a plane of contact perpendicular to the orientation of the pins at the pin's contact surfaces. The contact surfaces of the pins are contacted by a user's fingers or palm. Each pin can be individually moved perpendicularly to the pin's lengthwise axis, such that collectively the pins can be moved to convey different tactile sensations to the user. FIG. 9a shows a single "pin" 490, which is implemented as an EAP actuator 494 that can be linearly moved as indicated by arrow 496. A tactile cap 492 is positioned on the EAP pin 494 to be contacted by a user. In FIG. 9b, a plurality of the pins 490 of FIG. 9a have been positioned in a matrix to form a tactile array 500, where each pin 490 can be individually controlled to move vertically in either direction. An adjacent surface 502 provides a reference surface for the user's fingers. In FIG. 9c, a high density array 504 of EAP pins 490 is shown, where each EAP pin can represent a pixel-sized element. This array of pins can be used to indicate haptically to the user when certain features in a graphical environment are crossed or interacted with. For example, the array can be provided as a trackpad, where the position of the user's finger on the array determines the position of a cursor or entity in a graphical environment. The array of pins can be matrix scanned (or individually addressed) to sense where the user's finger current is on the array. When the user's finger moves over a border of a window, the EAP pins corresponding to the border location are moved upwards, giving the user's finger the sensation of crossing over a 3-D border. Other displayed features such as icons, folders, etc. can also be similarly haptically indicated. The high density array 504 can also be used to provide other tactile sensations based on interactions or events implemented in a computer environment.

[0108] FIG. 9d shows another embodiment 510 using the EAP pins described above. A lateral motion tactile element/ array can be provided, where tactile sensations are provided moving pins perpendicular to their lengthwise axes (laterally). Each pin is moved laterally to provide stretching of the user's skin or shear sensations instead of indenting the skin of the user as in the embodiments of FIGS. 9a-9c. More space can be provided between the pins to allow for the lateral motion. When using EAP actuators, one way to provide such lateral motion is to place two linearly-moving EAP actuators 512 on a grounded element, and place a flexible membrane 514 (or other member) over the actuators 512, where a lateral moving element 516 is placed on the flexible membrane 514 as shown in FIG. 9d. One or both of the EAP actuators 512 is moved vertically (if both are moved, it is in opposite directions), causing the flexible membrane to flex and the lateral element 516 to rock left or right as indicated by arrow 518. Alternatively, as shown in FIG. 9e, an EAP structure 520 that can be directly moved laterally using a control signal, such as referred to above in FIG. 2b and/or an element having sandwiched layers, can be used to provide the desired lateral motion. The actuator 520 can be moved laterally in one degree of freedom, or in some embodiments can be moved in two.

[0109] EAP actuators can be used to provide specific forces in particular applications. For example, FIG. 10 is a side elevation view of an EAP brake 530 used in a medical device, where a catheter wire 532 (or laparoscopic extension, needle, or other portion of medical or other instrument) is used in a haptic feedback medical simulation that provides forces on the medical instrument to simulate a medical procedure. An EAP brake includes an EAP element 534 that is coupled to a brake shoe 536 that can be moved laterally against the catheter wire 532, causing friction in the linear degree of freedom of the wire. The amount of friction can be adjusted by moving the EAP brake different distances. Another EAP brake can be used to provide resistance in the rotary degree of freedom of the wire 532.

[0110] Trigger devices can also make use of EAP actuators. FIG. 11 is a side elevational view of a device 540 including a trigger 542 that is pressed by a user to provide a signal to a game, simulation, or other program or device. The trigger 542 can be included in an interface device such as a gamepad, joystick, mouse, etc. For example, the trigger 542 can rotate about an axis of rotation B, which can be a coupling to a housing of the interface device. An EAP actuator 544 can be positioned between the trigger and a grounded switch 546. The switch 546 sends a signal indicating activation when a portion 548 is pressed. A spring 550 normally biases a contact plate 552 away from the switch 546; when the plate 552 is moved by the EAP actuator 544, the spring is compressed and the plate hits the portion 548 of the switch 546, activating it. The spring 550, meanwhile, biases the trigger back to its origin or rest position as well as providing a spring resistance force to trigger motion. The EAP actuator can be used to move in opposition to, or in conjunction with, trigger motion to provide a haptic sensation to the user pushing the trigger (this EAP force can supplement or override the spring force from 550). The actuator can thus make it easier or more difficult for the trigger to cause the switch to change states. For example, different resistances, damping, pulses, or vibrations can be output, as in all the linear EAP actuator embodiments described herein.

[0111] FIG. 12a shows a rotary knob 560 that can be used to control functions in a wide variety of devices. A spiral or coil EAP actuator 562 can be positioned inside the knob so that the EAP actuator exerts a torque on the knob when it is activated. Resistance or force can thus be provided in the rotary degree of freedom of the knob, as indicated by arrow 564, although a knob of limited rotational range should be used.

[0112] FIG. 12b illustrates a knob device 570 that includes an EAP actuator. Knob 572 is coupled to a rotating shaft 574, which is coupled to a cylindrical brake member 576 that can include a frictional surface. EAP actuator 578 includes a brake shoe 580 that is moved by the actuator 578 to contact the brake member 576. This engagement provides frictional forces on the shaft 574 and knob 572. This embodiment allows a knob having an unlimited (continuous) rotational range to be used. A linear EAP element can be used, as described in braking embodiments above.

[0113] FIG. 13 is a side elevational view of a braking embodiment 590 for a rotating disk. Disk 592 rotated about axis C. A caliper 594 is positioned at one end of the disk, and an EAP actuator 596 is coupled to one end of the caliper. The EAP actuator can be moved linearly to move a brake shoe 598 against the spinning cross-sectional surface of the disk, thus causing frictional resistance to the disk. A brake shoe 600 can be positioned on the other end of the caliper 594, opposite the